-
[더플러스수학] 고급수학1-행렬식(1)수학과 공부이야기/선형대수학 2021. 8. 23. 18:32
행렬식에 대해 알아보자. 먼저 행렬은 수를 직사각형 모양으로 배열한 것이고 행렬식은 정사각행렬에 대해서만 정의되고 하나의 실숫값이다.
다르게 말하면 행렬식은 정사각행렬에서 실수로 가는 일종의 함수라고 생각할 수 있다.
정의1. 행렬식(determinant of \displaystyle A)
\displaystyle n차의 정사각행렬 \displaystyle A=(a_{ij})_{n \times n}의 행렬식을 \displaystyle \left| A \right| 또는 \displaystyle det(A)로 나타내며 다음과 같이 귀납적으로 정의한다.
(1) \displaystyle n=1일 때, \displaystyle \left | a_{11} \right|=a_{11}
(2) \displaystyle n >1일 때,
\displaystyle \left| \begin{matrix} a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\\vdots&\cdots&&\vdots\\a_{n1}&a_{n2}&\cdots&a_{nn} \end{matrix}\right| =\sum_{i=1}^{n} \textcolor{red}{(-1)^{i+n} a_{in} M_{in}}
여기서 \displaystyle M_{ij}은 행렬 \displaystyle A에서 \displaystyle i행과 \displaystyle j열을 뺀 행렬의 행렬식을 나타내며 이것을 \displaystyle a_{ij}의 소행렬식이라고 한다.
또 행렬식의 정의에서 \displaystyle (-1)^{i+n}과 소행렬식 \displaystyle M_{ij}를 곱한 값을 하나의 기호로 나타내면 편한데, 행렬식 \displaystyle \left|A \right|에서 \displaystyle (-1)^{i+j} M_{ij}를 기호로 \displaystyle A_{ij}로 나타내고 이것을 성분 \displaystyle a_{ij}의 여인수(cofactor)라고 부른다. 즉
\displaystyle A_{ij}=(-1)^{i+j} M_{ij}
그러면 행렬식을 아래와 같이 나타내기도 한다.
\displaystyle \left| \begin{matrix} a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\\vdots&\cdots&&\vdots\\a_{n1}&a_{n2}&\cdots&a_{nn} \end{matrix}\right| =\sum_{i=1}^{n} \textcolor{blue}{a_{in} A_{in}}
이제 구체적인 예를 가지고 행렬식을 계산해보자.
\displaystyle |A|=\left| \begin{matrix} 1&-2&3\\ 2&1&-1\\-2&-1&2 \end{matrix}\right| 에서
\displaystyle A_{11}= (-1)^{1+1} M_{11}=\left|\begin{matrix} 1&-1\\ -1&2\end{matrix}\right|=(2-1)=1
\displaystyle A_{21}= (-1)^{2+1} M_{21}=\left|\begin{matrix} -2&3\\ -1&2\end{matrix}\right|=-(-2+3)=-1
\displaystyle A_{33}= (-1)^{3+3} M_{33}=\left|\begin{matrix} 1&-2\\ 2&1\end{matrix}\right|=(1+4)=5
행렬식과 여인수는 다음과 같은 관계식이 존재함이 알려져 있다. (이 말은 고등학교 과정에서 증명은 하지 않고 받아들여라는 말이다. 즉 어느 행(또는 열)에 대해 전개해도 행렬식이 똑같다는 것을 증명하는 것이 힘드니 받아들여 달라는 것이다. )
정리2. \displaystyle 2차 이상의 정사각행렬 \displaystyle A에 대하여
(i) 제 \displaystyle i행에 대하여 전개한 행렬식
\displaystyle \left|A\right|= \sum_{j=1}^n a_{\textcolor{red}{i} j} A_{ij} =a_{\textcolor{red}{i}1}A_{\textcolor{red}{i}1}+a_{\textcolor{red}{i}2}A_{\textcolor{red}{i}2}+\cdots+ a_{\textcolor{red}{i}n}A_{\textcolor{red}{i}n}
(ii) 제 \displaystyle j행에 대하여 전개한 행렬식
\displaystyle \left|A\right|= \sum_{i=1}^n a_{i\textcolor{blue}{ j}} A_{ij} =a_{1\textcolor{blue}{j}}A_{1\textcolor{blue}{j} }+a_{2\textcolor{blue}{j}}A_{2\textcolor{blue}{j}}+\cdots+ a_{n \textcolor{blue}{j}}A_{n\textcolor{blue}{j}}
예를 들어 행렬 \displaystyle A= \begin{bmatrix} 1&-2&3\\ 2&1&-1\\-2&-1&2 \end{bmatrix} 를 \displaystyle 2행에 대해 전개하면
\displaystyle \begin{align} det(A)&=a_{21}A_{21}+ a_{22}A_{22}+a_{23}A_{23}\\&=2\times (-1)^{2+1}\left|\begin{matrix} -2&3\\-1&2 \end{matrix} \right| +1 \times (-1)^{2+2} \left|\begin{matrix} 1&3\\-2&2 \end{matrix} \right| \\& +(-1)\times (-1)^{2+3}\left|\begin{matrix} 1&-2\\-2&-1 \end{matrix} \right| \\&=-2(-4+3)+(2+6)+(-1-4)=5\end{align}
또, \displaystyle 3열에 대해 전개하면
\displaystyle \begin{align} det(A)&=a_{13}A_{13}+ a_{23}A_{23}+a_{33}A_{33}\\&=3\times (-1)^{1+3}\left|\begin{matrix} 2&1\\-2&-1 \end{matrix} \right| -1 \times (-1)^{2+3} \left|\begin{matrix} 1&-2\\-2&-1 \end{matrix} \right| \\& +2\times (-1)^{3+3}\left|\begin{matrix} 1&-2\\2&1 \end{matrix} \right| \\&=3(-2+2)+(-1-4)+2(1+4)=5\end{align}
위에서 알 수 있듯이 어느 행이든 어느 열로 전개한 행렬식의 값은 똑같다는 것을 알 수 있다. 이 정도로 만족하자.
'수학과 공부이야기 > 선형대수학' 카테고리의 다른 글
[더플러스수학] 고급수학1-행렬식(2) (0) 2021.08.24 [더플러스수학] 가우스 소거법 - 기본 행 연산, 기본 행렬 (0) 2021.08.23 [더플러스수학] 필요충분조건-특이행렬과 고윳값 0 (0) 2021.08.21 [더플러스수학] 대칭행렬과 교대행렬 (0) 2021.08.20 [더플러스수학] (AB)^T=B^T A^T 증명 (전치행렬의 성질) (0) 2021.08.20