-
[카이스트 방학숙제2] winter 2022 assignment 2 [더플러스수학]수학과 공부이야기 2022. 1. 27. 16:05
Problem 1
Suppose that a function \(\displaystyle f : \mathbb{R} \rightarrow \mathbb{R}\) satisfies the following conditions for all real values \(\displaystyle x\) and \(\displaystyle y\):
(i) \(\displaystyle f(x + y) = f(x) · f(y)\).
(ii) \(\displaystyle f(x) = 1 + xg(x)\), where \(\displaystyle \lim\limits_{x \rightarrow 0} g(x) = 1\)
Show that the derivative f′(x) exists at every value of x (that is, f(x) is differentiable) and that
\(\displaystyle f′(x) = f(x)\).
Problem 2(a) Find the equation for the tangent line at the point \(\displaystyle (1, ~1)\) to the curve given by the equation
\(\displaystyle y^2 (2 − x) = x^3 \).
(b) Give an argument that proves the equality
\(\displaystyle \cos \left( \sin^{−1}(x) \right)= \sqrt{1-x^2}\)
(c) Assume that \(\displaystyle y = \sin^{−1}(x)\) is a differentiable function of \(\displaystyle x\). Use implicit differentiation on the equation \(\displaystyle x = \sin y\) to show that
\(\displaystyle \frac{dy}{dx}= \frac{1}{\sqrt{1-x^2 }}\).
'수학과 공부이야기' 카테고리의 다른 글
[카이스트 미적분기출] 2008 Midterm Exam of Calculus I [더플러스수학] (0) 2022.02.20 [수학의 기초] 삼각부등식 [더플러스수학] (0) 2022.02.13 [카이스트 방학숙제1] winter 2022 assignment 1 [더플러스수학] (0) 2022.01.27 [수학의 기초] 함수의 극한의 엄밀한 정의(1) $\epsilon-\delta$, $\displaystyle p \rightarrow q$와 $\displaystyle \sim p ~or~ q$와 그 부정 (0) 2022.01.23 [수학의 기초] 디리클레 자 함수(Dirichlete ruler function)-Thomae function (0) 2022.01.20