-
[고려대 미적분학 기출] 2018년 2학기 미적분학1 -exam1수학과 공부이야기 2022. 2. 24. 11:17
1. Using the precise definition of limit, show that
limx→1x2+1x3+x=1limx→1x2+1x3+x=1. (12pts)
2. If f(x)f(x) and g(x)g(x) are differentiable functions such that f(g(x))=tanxf(g(x))=tanx and f′(x)=1+f2(x), (−π2<x<π2), find the limit limx→0f(x)g(x) . (13pts)
3. Find the value k at which the equation ex=ksinx, (x>0) has exactly one solution. (13pts)
4.If the average of a continuous function g(x) on [0, 1] is k, show that there exist a solution of equation g(x)−k=0. (12 pts)
5.Find the limx→∞(31x+3−1x2)x if it exists. If not, give reasons. (12pts)
6. If f(x)=∫x0sec√tdt, find limx→0+1tan−1(x3)∫x20f(t)dt . (13pts)
7.Find the volume of the solid S where its base is the region enclosed by the parabola x=1−y2 and the y-axis, and its cross-sections perpendicular to x-axis are squares. (12pts)
8.If A is the triangular region bounded by the lines y=x+1, x=0, and y=0, find the volume of the solid generated by revolving the region A about the line y=x using cylindrical shells. (13pts)
https://youtu.be/lnBNSXtkdCI'수학과 공부이야기' 카테고리의 다른 글
[AP-Calculus] 고려대 미적분학 기출 (Spring, 2010) [더플러스수학] (0) 2022.03.12 [더플러스수학] 증가함수(또는 감소함수)의 역함수도 증가함수(또는 감소함수)이다. (0) 2022.03.05 [카이스트 미적분기출] 2008 Midterm Exam of Calculus I [더플러스수학] (0) 2022.02.20 [수학의 기초] 일대일 대응인 연속함수는 그 역함수도 연속함수이다. (0) 2022.02.16 [수학의 기초] 삼각부등식 [더플러스수학] (0) 2022.02.13