-
[AP-Calculus] 고려대 미적분학 기출 (Spring, 2010) [더플러스수학]수학과 공부이야기 2022. 3. 12. 21:48
2010학년도 봄, 고려대 미적분학 기출 Calculus Ⅰ Exam 1(Spring, 2010)
1. (15 pts) Let
f(x)={x2+1, if x≤0x3+1, if x>0
Use the 'ϵ−δ argument' to show that f is continuous on the real line.
2. (15 pts) Let f be a polynomial and let {x0,x1,⋯,xn} be the set of distinct real roots of the equation f(x)=0 on [0, 1]. Prove that there exists a∈[0,1 ] such that f[n](a)=0, where f(n) is the n-th derivative of f.
3. (14 pts) Find the linearization L(x) of f(x) at x=1 when f(x) is defined as
ex−1−x(f(x))3−(x−1)3f(x)=0.
4. (14 pts) Let f:R⟶R be defined by
f(x)=∫sinxcosxet2dt
Find f′(0) and f″(0).
5. (14 pts) Let f be a continuous function on the real line satisfying f(x+2)=f(x), f(x)>0 when 0<x<1, and f(x)<0 when −1<x<0. Define F as
F(x)=∫x0f(t)dt
Find all local maxima and local minima. Find the condition where the function F has at least one absolute maximum on the real line.
6. (14 pts) Let V(a) be the volume of the solid generated by revolving the region bounded by y=e−ax, y=0, x=f(a), and x=g(a) about the x-axis, where f and g are continuous functions with f(a)<g(a) for any real number a. Find V(a) and lima→0V(a).
7. (14 pts) Set f(x)=x2 and x0=3. Find x4 in Newton's method. Describe the procedure.
- YouTube
www.youtube.com
'수학과 공부이야기' 카테고리의 다른 글
[옥동수학학원][수학의 기초]울산과고 상계-상한, 하계-하한[더플러스수학] (0) 2022.03.22 [AP-Calculus] Proof of limx→af(x)=L⟺limh→0f(a+h)=L [더플러스수학] (0) 2022.03.16 [더플러스수학] 증가함수(또는 감소함수)의 역함수도 증가함수(또는 감소함수)이다. (0) 2022.03.05 [고려대 미적분학 기출] 2018년 2학기 미적분학1 -exam1 (0) 2022.02.24 [카이스트 미적분기출] 2008 Midterm Exam of Calculus I [더플러스수학] (0) 2022.02.20