-
[AP-Calculus] 고려대 미적분학 기출 (Spring, 2010) [더플러스수학]수학과 공부이야기 2022. 3. 12. 21:48
2010학년도 봄, 고려대 미적분학 기출 Calculus Ⅰ Exam 1(Spring, 2010)
1. (15 pts) Let
\(\displaystyle f ( x)= {\begin{cases}x ^{2} +1, ~& \rm {if}~ x \leq 0\\x ^{3} +1, ~&\rm{if}~ x>0\end{cases}} \)
Use the '\(\displaystyle \epsilon - \delta \) argument' to show that \(\displaystyle f \) is continuous on the real line.
2. (15 pts) Let \(\displaystyle f \) be a polynomial and let {\(\displaystyle x _{0} ,x _{1} , \cdots , x _{n} \)} be the set of distinct real roots of the equation \(\displaystyle f ( x)=0 \) on \(\displaystyle [0,~1] \). Prove that there exists \(\displaystyle a \in [0,1~] \) such that \(\displaystyle f ^{[n]} ( a)=0 \), where \(\displaystyle f ^{ ( n)} \) is the \(\displaystyle n \)-th derivative of \(\displaystyle f \).
3. (14 pts) Find the linearization \(\displaystyle L ( x) \) of \(\displaystyle f ( x) \) at \(\displaystyle x=1 \) when \(\displaystyle f ( x) \) is defined as
\(\displaystyle e ^{x-1} -x ( f ( x)) ^{3} - ( x-1) ^{3} f ( x)=0 \).
4. (14 pts) Let \(\displaystyle f \,:\, \mathbb{R} \longrightarrow \mathbb R \) be defined by
\(\displaystyle f ( x)= \int _{\cos x} ^{\sin x} {e ^{t ^{2}}} dt \)
Find \(\displaystyle f ' ( 0) \) and \(\displaystyle f '' ( 0) \).
5. (14 pts) Let \(\displaystyle f \) be a continuous function on the real line satisfying \(\displaystyle f ( x+2)=f ( x) \), \(\displaystyle f ( x)>0 \) when \(\displaystyle 0 < x < 1 \), and \(\displaystyle f ( x) < 0 \) when \(\displaystyle -1 < x < 0 \). Define \(\displaystyle F \) as
\(\displaystyle F ( x)= \int _{0} ^{x} {f ( t)} dt \)
Find all local maxima and local minima. Find the condition where the function \(\displaystyle F \) has at least one absolute maximum on the real line.
6. (14 pts) Let \(\displaystyle V ( a) \) be the volume of the solid generated by revolving the region bounded by \(\displaystyle y=e ^{-ax} \), \(\displaystyle y=0 \), \(\displaystyle x=f ( a) \), and \(\displaystyle x=g ( a) \) about the \(\displaystyle x \)-axis, where \(\displaystyle f \) and \(\displaystyle g \) are continuous functions with \(\displaystyle f ( a) < g ( a) \) for any real number \(\displaystyle a \). Find \(\displaystyle V ( a) \) and \(\displaystyle \lim\limits_{a \rightarrow 0} {V ( a)} \).
7. (14 pts) Set \(\displaystyle f ( x)=x ^{2} \) and \(\displaystyle x _{0} =3 \). Find \(\displaystyle x _{4} \) in Newton's method. Describe the procedure.
'수학과 공부이야기' 카테고리의 다른 글
[옥동수학학원][수학의 기초]울산과고 상계-상한, 하계-하한[더플러스수학] (0) 2022.03.22 [AP-Calculus] Proof of \(\lim\limits_{x \rightarrow a} f(x)=L \Longleftrightarrow \lim\limits_{h \rightarrow 0}f(a+h)=L\) [더플러스수학] (0) 2022.03.16 [더플러스수학] 증가함수(또는 감소함수)의 역함수도 증가함수(또는 감소함수)이다. (0) 2022.03.05 [고려대 미적분학 기출] 2018년 2학기 미적분학1 -exam1 (0) 2022.02.24 [카이스트 미적분기출] 2008 Midterm Exam of Calculus I [더플러스수학] (0) 2022.02.20