정답 86 86 (풀이)
x + y + √ 2 z = 0 x + y + 2 z = 0 위의 한 점을 P ( a , b , c ) P ( a , b , c ) 라고 하면 − − → O A ⋅ − − → A P = 6 O A → ⋅ A P → = 6 이므로
( 4 , 0 , 0 ) ⋅ ( a − 4 , b , c ) = 6 ( 4 , 0 , 0 ) ⋅ ( a − 4 , b , c ) = 6 , 4 ( a − 4 ) = 6 4 ( a − 4 ) = 6 ∴ ∴ a = 11 2 a = 11 2
점 P P 는 l : x = 11 2 , y + √ 2 z = − 11 2 l : x = 11 2 , y + 2 z = − 11 2 인 직선 위의 점이다 .
직선 l l 위에 원점 O O 에서 수선의 발을 내린 점을 B B 라 하면 B ( 11 2 , √ 2 t − 11 2 , − t ) B ( 11 2 , 2 t − 11 2 , − t ) 이고 ¯ ¯¯¯¯¯¯ ¯ O B ⊥ l O B ¯ ⊥ l 이므로
( 11 2 , √ 2 t − 11 2 , − t ) ⋅ ( 0 , √ 2 , − 1 ) = 0 ( 11 2 , 2 t − 11 2 , − t ) ⋅ ( 0 , 2 , − 1 ) = 0
따라서 t = 11 3 √ 2 t = 11 3 2 , B ( 11 2 , − 11 6 , − 11 3 √ 2 ) B ( 11 2 , − 11 6 , − 11 3 2 )
¯ ¯¯¯¯¯¯ ¯ O B O B ¯ 의 거리는 11 √ 3 11 3 이다 .
한편 , ∣ ∣ ∣ − − → O P ∣ ∣ ∣ | O P → | 가 9 9 이하의 자연수이므로
∣ ∣ ∣ − − → O P ∣ ∣ ∣ ≥ 7 | O P → | ≥ 7
따라서 49 ≤ a 2 + b 2 + c 2 ≤ 81 49 ≤ a 2 + b 2 + c 2 ≤ 81
75 4 ≤ b 2 + c 2 ≤ 203 4 75 4 ≤ b 2 + c 2 ≤ 203 4
− − → A P ⋅ − − → O P A P → ⋅ O P → = ( a − 4 , b , c ) ⋅ ( a , b , c ) = ( a − 4 , b , c ) ⋅ ( a , b , c ) = a ( a − 4 ) + b 2 + c 2 = a ( a − 4 ) + b 2 + c 2 = b 2 + c 2 + 33 4 = b 2 + c 2 + 33 4
그러므로 108 4 ≤ − − → A P ⋅ − − → O P ≤ 236 4 108 4 ≤ A P → ⋅ O P → ≤ 236 4
M + m = 344 4 = 86 M + m = 344 4 = 86
다른 풀이 ➊
점 A A 에서 평면 x + y + √ 2 z = 0 x + y + 2 z = 0 에 내린 수선의 발을 H H 라 하자 .
점 A ( 4 , 0 , 0 ) A ( 4 , 0 , 0 ) 에서 x + y + √ 2 z = 0 x + y + 2 z = 0 까지의 거리
∣ ∣ ∣ − − → A H ∣ ∣ ∣ = 4 √ 1 + 1 + 2 = 2 | A H → | = 4 1 + 1 + 2 = 2
∣ ∣ ∣ − − → O A ∣ ∣ ∣ = 4 | O A → | = 4 이므로 ∣ ∣ ∣ − − → O H ∣ ∣ ∣ = 2 √ 3 | O H → | = 2 3
− − → O A ⋅ − − → A P = 6 O A → ⋅ A P → = 6 에서
− − → O A ⋅ ( − − → O P − − − → O A ) = 6 O A → ⋅ ( O P → − O A → ) = 6
− − → O A ⋅ − − → O P − ∣ ∣ ∣ − − → O A ∣ ∣ ∣ 2 = 6 O A → ⋅ O P → − | O A → | 2 = 6
∴ ∴ − − → O A ⋅ − − → O P = 22 O A → ⋅ O P → = 22
( − − → O H + − − → H A ) ⋅ − − → O P = 22 ( O H → + H A → ) ⋅ O P → = 22
− − → O H ⋅ − − → O P + − − → H A ⋅ − − → O P = 22 O H → ⋅ O P → + H A → ⋅ O P → = 22
− − → H A ⋅ − − → O P = 0 H A → ⋅ O P → = 0 이므로 − − → O H ⋅ − − → O P = 22 O H → ⋅ O P → = 22
∣ ∣ ∣ − − → O P ∣ ∣ ∣ = n | O P → | = n , 두 벡터 − − → O H O H → , − − → O P O P → 가 이루는 각의 크기를 θ θ 라 하면
2 √ 3 × n × cos θ = 22 2 3 × n × cos θ = 22
cos θ = 11 n √ 3 cos θ = 11 n 3
0 ≤ cos θ ≤ 1 0 ≤ cos θ ≤ 1 이므로 n = 7 n = 7 , 8 8 , 9 9
− − → A P ⋅ − − → O P A P → ⋅ O P → = ( − − → H P − − − → H A ) ⋅ − − → O P = ( H P → − H A → ) ⋅ O P → = − − → H P ⋅ − − → O P − − − → H A ⋅ − − → O P = H P → ⋅ O P → − H A → ⋅ O P → = − − → H P ⋅ − − → O P = H P → ⋅ O P → = ( − − → O P − − − → O H ) ⋅ − − → O P = ( O P → − O H → ) ⋅ O P → = ∣ ∣ ∣ − − → O P ∣ ∣ ∣ 2 − − − → O H ⋅ − − → O P = | O P → | 2 − O H → ⋅ O P → = n 2 − 22 = n 2 − 22
n = 7 n = 7 일 때 최솟값 m = 49 − 22 = 27 m = 49 − 22 = 27
n = 9 n = 9 일 때 최댓값 M = 81 − 22 = 59 M = 81 − 22 = 59
M + m = 59 + 27 = 86 M + m = 59 + 27 = 86